วันพุธที่ 4 กันยายน พ.ศ. 2556

      Robot
1. หุ่นยนต์ คือ
หุ่นยนต์ หรือ โรบอต (robot) คือเครื่องจักรกลชนิดหนึ่ง มีลักษณะโครงสร้างและรูปร่างแตกต่างกัน หุ่นยนต์ในแต่ละประเภทจะมีหน้าที่การทำงานในด้านต่าง ๆ ตามการควบคุมโดยตรงของมนุษย์ การควบคุมระบบต่าง ๆ ในการสั่งงานระหว่างหุ่นยนต์และมนุษย์ สามารถทำได้โดยทางอ้อมและอัตโนมัติ โดยทั่วไปหุ่นยนต์ถูกสร้างขึ้นเพื่อสำหรับงานที่มีความยากลำบากเช่น งานสำรวจในพื้นที่บริเวณแคบหรืองานสำรวจดวงจันทร์ดาวเคราะห์ที่ไม่มีสิ่งมีชีวิต ปัจจุบันเทคโนโลยีของหุ่นยนต์เจริญก้าวหน้าอย่างรวดเร็ว เริ่มเข้ามามีบทบาทกับชีวิตของมนุษย์ในด้านต่าง ๆ เช่น ด้านอุตสาหกรรมการผลิต แตกต่างจากเมื่อก่อนที่หุ่นยนต์มักถูกนำไปใช้ ในงานอุตสาหกรรมเป็นส่วนใหญ่ ปัจจุบันมีการนำหุ่นยนต์มาใช้งานมากขึ้น เช่น หุ่นยนต์ที่ใช้ในทางการแพทย์ หุ่นยนต์สำหรับงานสำรวจ หุ่นยนต์ที่ใช้งานในอวกาศ หรือแม้แต่หุ่นยนต์ที่ถูกสร้างขึ้นเพื่อเป็นเครื่องเล่นของมนุษย์ จนกระทั่งในปัจจุบันนี้ได้มีการพัฒนาให้หุ่นยนต์นั้นมีลักษณะที่คล้ายมนุษย์ เพื่อให้อาศัยอยู่ร่วมกันกับมนุษย์ ให้ได้ในชีวิตประจำวัน
หุ่นยนต์ถูกแบ่งออกเป็น 2 ประเภทตามลักษณะการใช้งาน คือ 1.หุ่นยนต์ชนิดที่ติดตั้งอยู่กับที่ (fixed robot) เป็นหุ่นยนต์ที่ไม่สามารถเคลื่อนที่ไปไหนได้ด้วยตัวเอง มีลักษณะเป็นแขนกล สามารถขยับและเคลื่อนไหวได้เฉพาะแต่ละข้อต่อ ภายในตัวเองเท่านั้น มักนำไปใช้ในโรงงานอุตสาหกรรม เช่นโรงงานประกอบรถยนต์ 2. หุ่นยนต์ชนิดที่เคลื่อนที่ได้ (mobile robot) หุ่นยนต์ประเภทนี้จะแตกต่างจากหุ่นยนต์ที่ติดตั้งอยู่กับที่ เพราะสามารเคลื่อนที่ไปไหนมาไหนได้ด้วยตัวเอง โดยการใช้ล้อหรือการใช้ขา ซึ่งหุ่นยนต์ประเภทนี้ปัจจุบันยังเป็นงานวิจัยที่ทำการศึกษาอยู่ภายในห้องทดลอง เพื่อพัฒนาออกมาใช้งานในรูปแบบต่าง ๆ เช่นหุ่นยนต์สำรวจดาวอังคาร ขององค์การนาซ่า[1]
ปัจจุบันมีการพัฒนาหุ่นยนต์ให้มีลักษณะเป็นสัตว์เลี้ยงอย่างสุนัข เพื่อให้มาเป็นเพื่อนเล่นกับมนุษย์ เช่น หุ่นยนต์ IBO ของบริษัทโซนี่[2] หรือแม้กระทั่งมีการพัฒนาหุ่นยนต์ให้สามารถเคลื่อนที่แบบสองขาได้อย่างมนุษย์ เพื่ออนาคตจะสามารถนำไปใช้ในงานที่มีความเสี่ยงต่ออันตรายแทนมนุษย์ ในประเทศไทย สถานศึกษาในระดับอุดมศึกษาหลายแห่งหรือองค์กรของภาครัฐ และเอกชน ได้เล็งเห็นถึงประโยนช์ของเทคโนโลยีหุ่นยนต์ และร่วมเป็นแรงผลักดันให้เยาว์ชนในชาติ พัฒนาองค์ความรู้ เพื่อให้ก้าวทันเทคโนโลยีของประเทศที่พัฒนาแล้ว โดยการจัดให้มีการแข่งขันหุ่นยนต์ขึ้นในประเทศไทยหลายรายการ เพื่อให้นักศึกษาได้สามารถ นำความรู้ที่เรียนมาประยุกต์ใช้งานได้ เป็นการเสริมสร้างและพัฒนาทักษะ เพื่อนำความรู้ไปพัฒนาประเทศในอนาคต


2.ประเภทของหุ่นยนต์

ประเภทของหุ่นยนต์

ประเภทของหุ่นยนต์ สามารถแบ่งแยกได้หลากหลายรูปแบบตามลักษณะเฉพาะของการใช้งาน ได้แก่การแบ่งประเภทตามการเคลื่อนที่ นอกจากนี้อาจจำแนกตามรูปลักษณ์ภายนอกด้วยก็ได้

การแบ่งประเภทตามการเคลื่อนที่ได้

หุ่นยนต์ที่ติดตั้งอยู่กับที่ ไม่สามารถเคลื่อนที่ได้

หุ่นยนต์ที่ติดตั้งอยู่กับที่ สามารถเคลื่อนไหวไปมาแต่ไม่สามารถเคลื่อนที่ได้ หุ่นยนต์ในประเภทนี้ได้แก่ แขนกลของหุ่นยนต์ที่ใช้ในงานด้านอุตสาหกรรมต่าง ๆ เช่นงานด้านอุตสาหกรรมผลิตรถยนต์แขนกลของหุ่นยนต์ที่ใช้งานในด้านการแพทย์ เช่นแขนกลที่ใช้ในการผ่าตัด หุ่นยนต์ประเภทนี้จะมีลักษณะโครงสร้างที่ใหญ่โต เทอะทะและมีน้ำหนักมาก ใช้พลังงานให้สามารถเคลื่อนไหวได้จากแหล่งจ่ายพลังงานภายนอก และจะมีการกำหนดขอบเขตการเคลื่อนไหวของหุ่นยนต์เอาไว้ ทำให้หุ่นยนต์สามารถเคลื่อไหวไปมาได้ในเฉพาะที่ที่กำหนดเอาไว้เท่านั้น

หุ่นยนต์ที่สามารถเคลื่อนไหวและเคลื่อนที่ได้

หุ่นยนต์ที่สามารถเคลื่อนไหวร่างกายไปมาได้อย่างอิสระ หมายความถึงหุ่นยนต์ที่สามารถเคลื่อนย้ายตัวเองจากตำแหน่งหนึ่งไปยังอีกตำแหน่งหนึ่งได้อย่างอิสระ หรือมีการเคลื่อนที่ไปมาในสถานที่ต่าง ๆ เช่น หุ่นยนต์ที่ใช้ในการสำรวจดวงจันทร์ขององค์กรนาซ่า หุ่นยนต์สำรวจใต้พิภพหรือหุ่นยนต์ที่ใช้ในการขนถ่ายสินค้า ซึ่งหุ่นยนต์ที่สามารถเคลื่อนไหวได้นี้ ถูกออกแบบลักษณะของโครงสร้างให้มีขนาดเล็กและมีระบบเคลื่อนที่ไปมา รวมทั้งมีแหล่งจ่ายพลังสำรองภายในร่างกายของตนเอง แตกต่างจากหุ่นยนต์ที่ไม่สามารถเคลื่อนที่ไปมาได้ ซึ่งจะต้องมีแหล่งจ่ายพลังงานอยุ่ภายนอก
แหล่งจ่ายพลังสำรองภายในร่างกายของหุ่นยนต์ที่สามารถเคลื่อนไหวร่างกาย และสามารถเคลื่อนที่ไปมาได้นั้น โดยปกติแล้วจะถูกออกแบบลักษณะของโครงสร้างให้มีขนาดเล็กรวมทั้งมีปริมาณน้ำหนักไม่มาก เพื่อไม่ให้เป็นอุปสรรคต่อการปฏิบัติงานของหุ่นยนต์หรืออุปสรรคในการเคลื่อนที่

การแบ่งประเภทตามลักษณะรูปร่างภายนอก

โดยทั่วไป หุ่นยนต์ยังถูกจำแนกตามลักษณะรูปลักษณ์ภายนอก และมีคำศัพท์เฉพาะเรียกต่างๆกันไป ได้แก่ [5]
  • หุ่นยนต์ฮิวแมนนอยด์ (Humanoid Robot) เป็นลักษณหุ่นยนต์ที่เหมือนกับมนุษย์
  • แอนดรอยด์ (Android) เป็นการเรียกหุ่นยนต์คล้ายมนุษย์ที่สามารถแสดงออกเหมือนมนุษย์ แม้ว่ารากศัพท์ภาษากรีกของคำนี้หมายถึงเพศชาย แต่การใช้ในบริบทภาษาอังกฤษมักไม่ได้มีความหมายเจาะจงว่าเป็นเพศใด
  • จีนอยด์ (Gynoid) เป็นการเรียกหุ่นยนต์คล้ายมนุษย์เพศหญิง
  • แอ็คทรอยด์ (Actriod) เป็นหุ่นยนต์ที่เลียนแบบพฤติกรรมมนุษย์ เช่น กะพริบตา หายใจ เริ่มพัฒนาโดย มหาวิทยาลัยโอซาก้าและบริษัทโคโคโระ
  • ไซบอร์ก (Cyborg) เป็นหุ่นยนต์ที่เชื่อมต่อกับสิ่งมีชีวิต หรือ ครื่งคนครึ่งหุ่น เริ่มปรากฏครั้งแรกในเรื่องแต่งปี 1960
  • นาโนโรบอท (Nanorobot) เป็นหุ่นยนต์ขนาดเล็กมาก ขนาดประมาณ 0.5-3 ไมครอน

ประโยชน์และความสามารถของหุ่นยนต์

หุ่นยนต์เริ่มเข้ามามีบทบาทกับชีวิตประจำวันของมนุษย์เรื่อยมา เทคโนโลยีที่ได้รับการพัฒนาอย่างต่อเนื่องในปัจจุบัน ทำให้ความสามารถของหุ่นยนต์พัฒนาขึ้นอย่างรวดเร็ว สามารถทำงานต่าง ๆ ที่มนุษย์ไม่สามารถทำได้จำนวนมาก ซึ่งการนำหุ่นยนต์เข้าใช้งานแทนมนุษย์นั้น สามารถแบ่งประเภทตามความสามารถของหุ่นยนต์ได้ ดังนี้

ความสามารถในด้านการแพทย์

ในงานด้านการแพทย์ เริ่มนำเอาหุ่นยนต์แขนกลเข้ามามีส่วนร่วมในการช่วยทำการผ่าตัดคนไข้ เนื่องจากหุ่นยนต์นั้นสามารถทำงานในด้านที่มีความละเอียดสูงที่เกินกว่ามนุษย์จะทำได้ เช่น การนำเอาหุ่นยนต์มาใช้งานด้านการผ่าตัดสมอง ซึ่งมีความจำเป็นอย่างมากที่ต้องการความละเอียดในการผ่าตัด หุ่นยนต์แขนกลจึงกลายเป็นส่วนหนึ่งของการผ่าตัดในด้านการแพทย์ การทำงานของหุ่นยนต์แขนกลในการผ่าตัด จะเป็นลักษณะการทำงานของการควบคุมการผ่าตัดโดยผ่านทางแพทย์ผู้ทำการผ่าตัดอีกที ซึ่งการผ่าตัดโดยมีหุ่นยนต์แขนกลเข้ามามีส่วนร่วมนั้นจะเน้นเรื่องความปลอดภัยเป็นอย่างสูง รวมทั้งความสามารถในการเคลื่อนที่ของหุ่นยนต์ รวมถึงงานเภสัชกรรมที่มีบางโรงพยาบาลนำหุ่นยนต์มาใช้ในการจ่ายยา [6]

ความสามารถในงานวิจัย

หุ่นยนต์สามารถทำการสำรวจงานวิจัยทางด้านวิทยาศาสตร์ร่วมกับมนุษย์ เช่น การสำรวจท้องทะเลหรือมหาสมุทรที่มีความลึกเป็นอย่างมาก หรือการสำรวจบริเวณปากปล่องภูเขาไฟเพื่อเก็บบันทึกข้อมูลการเปลี่ยนแปลงต่าง ๆ ซึ่งเป็นงานเสี่ยงอันตรายที่เกินขอบเขตความสามารถของมนุษย์ที่ไม่สามารถปฏิบัติงานสำรวจเช่นนี้ได้ ทำให้ปัจจุบันมีการพัฒนาหุ่นยนต์เพื่อใช้ในงานวิจัยและสำรวจ เพื่อให้หุ่นยนต์สามารถทนต่อสภาพแวดล้อมและสามารถทำการควบคุมหุ่นยนต์ได้ในระยะไกลด้วยระบบคอนโทรล โดยมีเซนเซอร์ติดตั้งที่ตัวหุ่นยนต์เพื่อใช้ในการวัดระยะทางและเก็บข้อมูลในส่วนต่าง ๆ ทางด้านวิทยาศาสตร์

ความสามารถในงานอุตสาหกรรม

หุ่นยนต์เริ่มมีบทบาททางด้านเทคโนโลยีอุตสาหกรรมในขณะที่งานด้านอุตสาหกรรม มีความต้องการด้านแรงงานเป็นอย่างมาก การจ้างแรงงานจำนวนมากเพื่อใช้ในงานอุตสาหกรรม ทำให้ต้นทุนการผลิตของแต่ละโรงงานอุตสาหกรรม เพิ่มจำนวนสูงขึ้น และงานอุตสาหกรรมบางงานไม่สามารถที่จะใช้แรงงงานเข้าไปทำได้ ซึ่งบางงานนั้นอันตรายและมีความเสี่ยงเป็นอย่างมาก หรือเป็นงานที่ต้องการความรวดเร็วและแม่นยำในการผลิตรวมทั้งเป็นการประหยัดระยะเวลา ทำให้หุ่นยนต์กลายเป็นทางออกของงานด้านอุตสาหกรรม

ความสามารถในด้านความมั่นคง

อาจจะสร้างเครื่องบินสอดแนมผู้ก่อการร้าย โดยติดตั้งเรดาร์คอยตรวจจับเหตุที่อาจไม่ชอบมาพากล

ความสามารถในด้านบันเทิง

หุ่นยนต์ประเภทนี้ได้รับการพัฒนาให้สามารถตอบโต้กับคนได้เสมือนเป็นเพื่อน เล่นหรือสัตว์เลี้ยง ซึ่งมีในรูปแบบของสุนัข แมว และแมลง เป็นต้น หรือกระทั่งสร้างความบันเทิงทางเพศให้กับมนุษย์ได้อีกด้วย

ความสามารถในงานครัวเรือน

Roomba หุ่นยนต์เครื่องดูดฝุ่นสำหรับใช้ในครัวเรือน
AIBO หุ่นยนต์สุนัขของ Sony

หุ่นยนต์ในวัฒนธรรมสมัยนิยม

หุ่นยนต์เป็นจินตนาการของมนุษย์ที่ถ่ายทอดผ่านเรื่องแต่งต่าง ๆ ซึ่งปรากฏใน นิยายวิทยาศาสตร์ การ์ตูน และ ภาพยนตร์ และเป็นที่รู้จักอย่างแพร่หลาย เช่น เจ้าหนูอะตอม (Astro Boy)โดราเอมอน (Doraemon) กันดั้ม (Gundum) โรโบค็อป (RoboCop)

ดูเพิ่ม


















3.ส่วนประกอบของหุ่นยนต์

ส่วนประกอบของหุ่นยนต์

ในหุ่นยนต์ ๑ ตัวประกอบด้วยอุปกรณ์และชิ้นส่วนต่างๆ มากมาย ซึ่งอุปกรณ์แต่ละชนิดมีหน้าที่แตกต่างกันตามลักษณะ และวัตถุประสงค์ของการใช้งาน การเลือกใช้อุปกรณ์และชิ้นส่วนต่างๆ จึงจำเป็นต้องอาศัยความรู้ ความเข้าใจ รวมถึงความเหมาะสม เพื่อให้หุ่นยนต์สามารถทำงานได้อย่างมีประสิทธิภาพ รวดเร็ว คงทน และประหยัดพลังงาน

หุ่นยนต์แบ่งส่วนประกอบใหญ่ๆ ออกเป็น ๔ ส่วน ได้แก่

๑. อุปกรณ์ทางกล (mechanic)
๒. อุปกรณ์ขับเร้า (actuator)
๓. อุปกรณ์ไฟฟ้าหรืออุปกรณ์อิเล็กทรอนิกส์ (electronic equipment)
๔. อุปกรณ์ควบคุม (controller)
หุ่นยนต์สำรวจและกู้ภัย ใช้ในพื้นที่ที่เสียงอันตราย ซึ่งมนุษย์ไม่สามารถเข้าไปได้
หุ่นยนต์สำรวจและกู้ภัย ใช้ในพื้นที่ที่เสี่ยงอันตราย ซึ่งมนุษย์ไม่สามารถเข้าไปได้
๑. อุปกรณ์ทางกล (Mechanic)

คือ ชิ้นส่วนกลไกต่างๆ ของหุ่นยนต์ เช่น โครงสร้าง เพลา เฟือง สกรูส่งกำลัง สายพาน โซ่ สปริง ข้อต่อสวมเพลา คลัตช์ เบรก ข้อต่อ ก้านต่อโยง ตลับลูกปืนและปลอกสวม
โครงสร้างของ "หุ่นยนต์คุณหมอพระราชทาน"
โครงสร้างของ "หุ่นยนต์คุณหมอพระราชทาน"
โครงสร้าง (Frame) 

โครงสร้างเป็นส่วนประกอบหลักของหุ่นยนต์ ซึ่งทำหน้าที่ยึดจับอุปกรณ์ต่างๆ ในตัวหุ่นยนต์ และยังป้องกันอุปกรณ์ต่างๆ ไม่ให้ได้รับอันตรายจากภายนอก โครงสร้างของหุ่นยนต์เปรียบได้กับโครงกระดูกของมนุษย์ และมีลักษณะแตกต่างกันไป ตามหน้าที่การทำงานและวัตถุประสงค์ของหุ่นยนต์นั้นๆ เช่น หุ่นยนต์ทรงกลมที่สร้างขึ้น เพื่อศึกษาลักษณะการกลิ้ง จะออกแบบโครงสร้างของหุ่นยนต์ให้มีลักษณะเหมือนลูกบอล แต่หากหุ่นยนต์ถูกสร้างขึ้นมา เพื่อเลียนแบบการทำงาน หรือการเคลื่อนที่ของสิ่งมีชีวิต โครงสร้างนั้นก็จะถูกออกแบบมาให้มีลักษณะคล้ายกับสิ่งมีชีวิตชนิดนั้นๆ โดยแสดงโครงสร้างขาของหุ่นยนต์เลียนแบบขาของมนุษย์ วัสดุที่นิยมนำมาสร้างเป็นโครงสร้างของหุ่นยนต์ ได้แก่ อะลูมิเนียม เหล็ก พลาสติก ซึ่งการเลือกใช้วัสดุนั้นขึ้นอยู่กับลักษณะการนำไปใช้งาน เช่น หากต้องการสร้างหุ่นที่มีน้ำหนักเบา ควรเลือกใช้อะลูมิเนียมเป็นวัสดุหลัก นอกจากนี้ การเลือกใช้วัสดุควรคำนึงถึงปัจจัยอื่นๆ ประกอบด้วย เช่น กระบวนการผลิต ราคา
เพลา (Shaft)

เพลาเป็นชิ้นส่วนที่มีลักษณะเป็นก้านทรงกระบอกที่หมุนได้ ใช้สำหรับการส่งถ่ายกำลังจากอุปกรณ์ขับเร้า เช่น มอเตอร์ ไปยังส่วนที่เคลื่อนไหวของหุ่นยนต์ เพลาเป็นชิ้นส่วนที่สำคัญมากในหุ่นยนต์ที่เคลื่อนไหวได้ทุกชนิด นอกจากเพลาแล้ว ยังมีแกน (axle) ซึ่งมีลักษณะเดียวกันกับเพลา แต่ไม่สามารถหมุนได้ ทำหน้าที่รองรับชิ้นส่วนที่หมุน เช่น ล้อ
เพลาขับ ทำหน้าที่ถ่ายทอดพลังงานในการขับเคลื่อนไปที่ล้อ
เพลาขับ ทำหน้าที่ถ่ายทอดพลังงานในการขับเคลื่อนไปที่ล้อ
เฟือง (Gear)

เฟืองทำหน้าที่ส่งกำลังจากเพลาหนึ่งไปยังอีกเพลาหนึ่ง โดยใช้การขบกันของฟันเฟือง ในการส่งถ่ายกำลังของเฟืองนั้น จะประกอบไปด้วยเฟือง ๒ ตัว ที่ขบกันอยู่ โดยมีเฟืองขับ (driving gear) หรือพิเนียน (pinion) เป็นตัวหมุนส่งกำลังให้แก่เฟืองตาม (driven gear) เฟืองที่นิยมใช้ในหุ่นยนต์มีอยู่หลายชนิด ซึ่งเฟืองแต่ละชนิดสามารถจำแนกได้ตามลักษณะของฟัน ได้แก่ เฟืองตรง  เฟืองเฉียง เฟืองดอกจอก และชุดเฟืองหนอน
เฟืองดอกจอก
เฟืองดอกจอก
สกรูส่งกำลัง (Power screw)

สกรูส่งกำลังมีหน้าที่ส่งกำลังโดยเปลี่ยนจากการหมุนเป็นการเลื่อน มีอัตราการทดของเฟืองที่สูงมาก จึงสามารถใช้ในการส่งถ่ายกำลังได้ดี นิยมใช้ในงานที่ต้องแบกรับน้ำหนักมากๆ
สายพาน (Belt) 

สายพานมีหน้าที่ส่งกำลังจากเพลาหนึ่งไปยังอีกเพลาหนึ่ง เช่นเดียวกับเฟือง แต่สายพานมีสมบัติเฉพาะตัว คือ อ่อนตัวได้ สามารถรับแรงกระตุกและแรงสั่นได้ดีกว่าเฟือง เสียงเบากว่า แต่ก็มีข้อเสีย คือ อัตราทดไม่แน่นอน เนื่องจาก การไถลตัวของสายพาน และไม่สามารถรับอัตราทดที่สูงได้ การส่งกำลังด้วยสายพานทำได้โดยติดตั้งวงล้อสายพานตั้งแต่ ๒ อันขึ้นไป โดยทั่วไปชนิดของสายพานที่นิยมใช้ในหุ่นยนต์ ได้แก่ สายพานแบน ที่มีหน้าตัดขวางเป็นรูปสี่เหลี่ยมผืนผ้า สายพานกลม ที่มีหน้าตัดขวางเป็นวงกลม สายพานลิ่ม ที่มีหน้าตัดขวางเป็นสี่เหลี่ยมคางหมู และสายพานฟัน ที่มีลักษณะเหมือนกับสายพานแบน แต่ที่สายพานจะมีฟัน เพื่อใช้ขบกับวงล้อสายพานแบบเฟือง ทำให้ไม่มีการลื่นไถล
สายพานฟัน
สายพานฟัน
โซ่ (Chain) 

โซ่มีหน้าที่ส่งกำลังจากเพลาหนึ่งไปยังอีกเพลาหนึ่งเช่นเดียวกับเฟืองและสายพาน ในการส่งกำลัง โซ่จะคล้องอยู่รอบเฟืองโซ่ตั้งแต่ ๒ อันขึ้นไป ซึ่งเฟืองโซ่เป็นล้อที่มีฟันรูปร่างพิเศษ เพื่อรับกับร่องของโซ่ ในการขับด้วยโซ่นั้น ข้อโซ่จะขบกับฟันของเฟืองโซ่ จึงไม่มีการลื่นไถล ทำให้การส่งกำลังมีอัตราทดคงที่เช่นเดียวกับการขับด้วยเฟือง แต่การติดตั้งไม่ต้องเที่ยงตรงเหมือนกับการติดตั้งเฟือง จึงเป็นที่นิยมกันมาก แต่ก็มีข้อเสีย คือ มีเสียงดัง
โซ่
โซ่
ข้อต่อ (Joint)

ข้อต่อเป็นอุปกรณ์ที่ใช้เชื่อมต่อชิ้นส่วนที่เคลื่อนที่อย่างสัมพันธ์กันของหุ่นยนต์ โดยทั่วไปมี ๒ ชนิด คือ ข้อต่อหมุน (rotational joint) เป็นข้อต่อที่ต่อกับชิ้นส่วนที่เคลื่อนที่ในลักษณะที่มีการหมุนรอบข้อต่อ และข้อต่อเชิงเส้น (linear joint) เป็นข้อต่อที่ต่อกับชิ้นส่วนที่เคลื่อนที่ในลักษณะเป็นเชิงเส้น เช่น เคลื่อนที่แบบไป-กลับในแนวเส้นตรงหรือโค้ง
สปริงขด
สปริงขด
สปริง (Spring)

สปริงเป็นชิ้นส่วนที่มีความยืดหยุ่น มีหน้าที่หลายอย่าง เช่น ส่งแรงจากชิ้นส่วนหนึ่งไปยังอีกชิ้นส่วนหนึ่ง รองรับแรงกระแทก เป็นแหล่งพลังงานให้แก่กลไก และยังมีหน้าที่ให้ชิ้นส่วนกลับคืนสู่ตำแหน่งเดิม สปริงที่นิยมใช้ในหุ่นยนต์ ได้แก่ สปริงขด สปริงขดแบบดึง สปริงขดแบบบิด สปริงแผ่น สปริงแหวน และสปริงลาน
ข้อต่อสวมเพลาแบบยืดหยุ่นได้
ข้อต่อสวมเพลาแบบยืดหยุ่นได้
ข้อต่อสวมเพลา (Coupling)

ข้อต่อสวมเพลาเป็นอุปกรณ์ซึ่งมีหน้าที่ส่งถ่ายแรงบิดระหว่างเพลา ๒ เพลา โดยเพลาที่ต่อกับต้นกำลังจะเป็นเพลาขับ และอีกด้านหนึ่งเป็นเพลาตาม ข้อต่อสวมเพลาที่นิยมใช้กับหุ่นยนต์สามารถแบ่งออกได้ดังนี้  
  • ข้อต่อสวมเพลาแบบแข็งเกร็ง (rigid coupling) ใช้ในการต่อเพลาที่มีศูนย์ของเพลาทั้งสองอยู่ตรงกัน  
  • ข้อต่อสวมเพลาแบบยืดหยุ่นได้ (flexible coupling) มีความยืดหยุ่นเล็กน้อย จึงช่วยประกอบเพลา ๒ เพลา ที่มีการเยื้องศูนย์ได้ และยังช่วยลดการเกิดแรงกระชากหรือแรงสั่นได้อีกด้วย  
  • ข้อต่อสวมเพลานิรภัย (safety coupling) ใช้ป้องกันไม่ให้เกิดภาระเกิน (over load)
คลัตช์ (Clutch)

คลัตช์เป็นอุปกรณ์ที่มีหน้าที่ส่งถ่ายแรงบิดระหว่างเพลา ๒ เพลา  เช่นเดียวกับข้อต่อสวมเพลา  แต่สามารถตัดต่อกำลังในการส่งถ่ายได้ในขณะที่เพลากำลังหมุนอยู่  คลัตช์แบ่งเป็น ๒ ประเภทใหญ่ๆ คือ คลัตช์ที่ใช้แรงเสียดทานระหว่างผิวสัมผัส (friction clutch)  ได้แก่  คลัตช์แผ่น  คลัตช์ลิ่ม คลัตช์ก้ามปู และคลัตช์แม่เหล็กไฟฟ้า คลัตช์ประเภทนี้จะเกิดการลื่นไถลได้  ทำให้ลดแรงกระแทกที่เกิดขึ้นที่ข้อต่อเพลา  แต่มีข้อเสียคือ มักเกิดความร้อนสูง  ส่วนคลัตช์อีกประเภทหนึ่งคือ  คลัตช์ที่ไม่ใช้ความเสียดทานระหว่างผิวสัมผัส (positive contact clutch) ได้แก่ คลัตช์ที่ใช้วิธีการล็อกทางกลโดยตรง (direct mechanical lock-up) ข้อดีคือ ไม่มีการลื่นไถลทำให้ไม่เกิดความร้อน ส่วนข้อเสีย คือ ไม่สามารถตัดต่อเพลาที่หมุนด้วยความเร็วรอบสูงได้ และจะเกิดแรงกระแทกขึ้นทุกครั้ง
คลัตซ์แผ่น
คลัตซ์แผ่น
เบรก (Break)เบรกเป็นอุปกรณ์ที่ใช้ควบคุมการเคลื่อนที่ของชิ้นส่วน ทำให้การเคลื่อนที่ช้าลง หรือหยุดการเคลื่อนที่ของชิ้นส่วนนั้นๆ ด้วยการใช้แรงเสียดทานระหว่างผิวสัมผัส เบรกแบ่งออกเป็น ๓ประเภทใหญ่ๆ คือ เบรกแผ่นคาด เบรกก้ามปู และเบรกแบบจาน
เบรก
เบรก
ตลับลูกปืนและปลอกสวม (Bearing and Bush)

ตลับลูกปืนและปลอกสวมต่างก็เป็นอุปกรณ์ที่ใช้รองรับจุดหมุน หรือจุดต่างๆ ที่เคลื่อนที่ของหุ่นยนต์ มีหน้าที่ลดแรงเสียดทาน ที่เกิดจากการเคลื่อนไหวของอุปกรณ์
กลไกก้านต่อโยง
กลไกก้านต่อโยง
จอเรดาร์แบบพีพีไอ
ก้านต่อโยง (Link)

ก้านต่อโยงในที่นี้หมายถึง ชื่อเรียกชิ้นส่วนของวัตถุที่นำมาเชื่อมต่อ เพื่อสร้างการเคลื่อนไหวของหุ่นยนต์ ซึ่งหากนำก้านต่อโยงหลายๆ อันมาต่อรวมกันจะเรียกว่า กลไกก้านต่อโยง
๒. อุปกรณ์ขับเร้า (Actuator)

คือ อุปกรณ์ที่สามารถเปลี่ยนแปลงพลังงานไฟฟ้าที่ป้อนเข้าให้กลายเป็นการกระจัด การเคลื่อนที่ หรือแรง เช่น มอเตอร์ไฟฟ้า ระบบนิวแมติก ระบบไฮดรอลิก
อุปกรณ์ขับเร้า
อุปกรณ์ขับเร้า
มอเตอร์ไฟฟ้า (Electric motor)

มอเตอร์ไฟฟ้าเป็นอุปกรณ์เปลี่ยนพลังงานไฟฟ้าเป็นพลังงานกล มีหน้าที่เป็นตัวขับกลไกต่างๆ ของหุ่นยนต์ให้เคลื่อนไหว เปรียบเสมือนกล้ามเนื้อของมนุษย์ที่มีหน้าที่ขับเคลื่อนอวัยวะต่างๆ ให้เคลื่อนไหว เช่น เมื่อต่อมอเตอร์เข้ากับข้อต่อ หุ่นยนต์จะสามารถหมุนข้อต่อนั้นได้ หรือต่อมอเตอร์เข้ากับชุดล้อ หุ่นยนต์ก็จะสามารถขับเคลื่อนได้ มอเตอร์ไฟฟ้าแบบหมุนต่อเนื่อง ประกอบไปด้วย ๒ ส่วน คือ ส่วนที่อยู่กับที่หรือสเตเตอร์ (stator) และส่วนที่เคลื่อนที่หรือโรเตอร์ (rotor) โดยมีหลักการทำงาน คือ กระแสไฟฟ้าที่ถูกจ่ายเข้าไปเป็นพลังงานให้แก่มอเตอร์ ทำให้เกิดสนามแม่เหล็กไฟฟ้าในขดลวดสเตเตอร์และขดลวดโรเตอร์ การผลักกันของสนามแม่เหล็กไฟฟ้าทั้งสอง ทำให้เพลาที่ต่ออยู่กับโรเตอร์หมุนอย่างต่อเนื่องไปเรื่อยๆ และจะหยุดหมุนก็ต่อเมื่อ ปิดการจ่ายพลังงานไฟฟ้า หรือแรงหมุนของมอเตอร์ไม่สามารถเอาชนะภาระที่มากระทำต่อมอเตอร์ได้
มอเตอร์แบบลำดับขั้น
มอเตอร์แบบลำดับขั้น
มอเตอร์แบบลำดับขั้นหรือสเตปเปอร์มอเตอร์ (Stepper motor)

โดยทั่วไปแล้วมอเตอร์ไฟฟ้าจะมีการหมุนที่ต่อเนื่อง และอาจไม่สะดวกมากนัก หากต้องการสั่งการทำงานให้เคลื่อนที่เป็นองศา ตามที่กำหนด มอเตอร์แบบลำดับขั้นจึงเป็นอีกทางเลือกหนึ่ง ที่สามารถนำไปใช้งานควบคุมทิศทางการหมุน ตามตำแหน่งที่ต้องการได้ หากตำแหน่งนั้นตรงกับลำดับขั้นของมอเตอร์พอดี ลักษณะการทำงานของมอเตอร์แบบลำดับขั้น จะต้องป้อนสัญญาณพัลส์ (pulse) ให้แก่ขดลวดสเตเตอร์ ทำให้เกิดแรงผลักที่โรเตอร์ จึงเกิดการหมุนของมอเตอร์แบบลำดับขั้น เมื่อหมุนครบ ๑ รอบจะเท่ากับ ๓๖๐ องศา ซึ่งถ้ามอเตอร์แบบลำดับขั้นมีการหมุนเท่ากับ ๕ องศาต่อขั้น ความละเอียดในการหมุนของมอเตอร์แบบลำดับขั้นตัวนี้ จึงจะเท่ากับ ๗๒ ขั้นต่อรอบ ปัจจุบัน มีการใช้งานมอเตอร์แบบลำดับขั้นอย่างแพร่หลาย เพราะสามารถควบคุมการหมุนตำแหน่งใดก็ได้ เช่น หัวอ่านซีดีรอม ฮาร์ดดิสก์ ตลอดจนอุตสาหกรรมการผลิตต่างๆ เช่น หุ่นยนต์อุตสาหกรรม ระบบสายพาน
เซอร์โวมอเตอร์ (Servo motor)

เป็นมอเตอร์ชนิดพิเศษ ที่สามารถควบคุมให้ทำงาน เฉพาะในตำแหน่งใดตำแหน่งหนึ่งได้ โดยเซอร์โวมอเตอร์ประกอบด้วย มอเตอร์ไฟฟ้า เซ็นเซอร์จับตำแหน่งของเพลา และวงจรอิเล็กทรอนิกส์ที่ควบคุมมอเตอร์ คำว่า “เซอร์โว” มาจากระบบ ที่สามารถควบคุมพฤติกรรมของมันเองได้ ซึ่งสามารถวัดตำแหน่งของตัวเอง และชดเชยกำลังงานที่เสียไป ด้วยสัญญาณควบคุมที่ป้อนกลับมา มอเตอร์ชนิดนี้ นิยมใช้ในงานที่ต้องการความแม่นยำของตำแหน่งสูง
เซอร์โวมอเตอร์
เซอร์โวมอเตอร์
ระบบนิวแมติก (Pneumatic)

ระบบนิวแมติก คือ ระบบกำลังของไหลที่ใช้แรงดันของอากาศเป็นตัวขับเคลื่อนอุปกรณ์ต่างๆ ให้เป็นพลังงานกล เช่น กระบอกสูบระบบนิวแมติก มอเตอร์ระบบนิวแมติก เนื่องจากของไหลที่ใช้ในการอัดคือ อากาศ ซึ่งมีการอัดยุบตัวได้ ระบบนิวแมติกจึงไม่สามารถแบกรับน้ำหนักมากได้
อุปกรณ์ระบบนิวแมติก
อุปกรณ์ระบบนิวแมติก
ระบบไฮดรอลิก (Hydraulic)

ระบบไฮดรอลิก คือ ระบบกำลังของไหล ที่ใช้แรงดันของเหลวเป็นตัวขับเคลื่อนอุปกรณ์ต่างๆ ให้เป็นพลังงานกล โดยมีหลักการทำงานคล้ายระบบนิวแมติก แต่แตกต่างกันที่ของไหลที่ใช้ในการอัด เนื่องจากของไหลที่ใช้ในการอัดคือ ของเหลว ซึ่งไม่มีการยุบตัว ระบบไฮดรอลิกจึงนิยมใช้ในงานที่ต้องใช้กำลังสูง
อุปกรณ์ระบบไฮดรอลิก
อุปกรณ์ระบบไฮดรอลิก
๓. อุปกรณ์ไฟฟ้าหรืออุปกรณ์อิเล็กทรอนิกส์ (Electronic equipment)

คือ อุปกรณ์ไฟฟ้าหรืออุปกรณ์ที่ใช้สัญญาณทางระบบไฟฟ้า เช่น อุปกรณ์ตรวจรู้ วงจรขับต่างๆ อุปกรณ์แสดงผล

อุปกรณ์ตรวจรู้ (Sensor)

อุปกรณ์ตรวจรู้หรือที่เรียกกันว่า เซ็นเซอร์ ใช้สำหรับตรวจวัดปริมาณของตัวแปรต่างๆ ที่ใช้ในการรับค่า (input) ปริมาณทางฟิสิกส์  เช่น แสง สี อุณหภูมิ เสียง แรง ความดัน ความหนาแน่น ระยะทาง ความเร็ว อัตราเร่ง ระดับความสูง อัตราการไหล แล้วแปลงปริมาณทางฟิสิกส์ที่ได้เป็นสัญญาณไฟฟ้า หรือปริมาณการวัดในรูปแบบที่สามารถนำไปประมวลผลต่อได้
อุปกรณ์ตรวจรู้เป็นส่วนที่สำคัญในการทำงานของหุ่นยนต์ โดยเปรียบเสมือนประสาทสัมผัสในการทำงานของมนุษย์ เช่น อุปกรณ์ตรวจรู้แสงที่ทำหน้าที่เหมือนตา โดยเปลี่ยนแสงและสีที่รับเข้ามาเป็นสัญญาณไฟฟ้า แล้วส่งต่อให้ระบบประมวลผล อุปกรณ์ตรวจรู้มีหลายชนิดขึ้นอยู่กับสิ่งที่จะตรวจวัด เช่น อุปกรณ์ตรวจรู้อินฟราเรด ที่ใช้บอกตำแหน่ง โดยการสะท้อนของคลื่นแสง ที่มีความถี่ต่ำกว่าแสงสีแดง อุปกรณ์ตรวจรู้อัลตราโซนิกใช้บอกตำแหน่งโดยการสะท้อนของคลื่นเสียงที่มีความถี่สูง เลเซอร์เรนจ์ไฟน์เดอร์ (laser rangefinder sensor) ใช้ในการกะระยะนำทางโดยใช้แสงเลเซอร์ อุปกรณ์ตรวจรู้ระบบจีพีเอส (GPS: Global Positioning System) ใช้ในการบอกตำแหน่ง โดยใช้การอ้างอิงจากดาวเทียม นอกจากนี้ยังมี
  • อุปกรณ์ตรวจรู้วัดตำแหน่ง  
  • อุปกรณ์ตรวจรู้วัดความเร็ว  
  • อุปกรณ์ตรวจรู้วัดความเร่ง  
  • อุปกรณ์ตรวจรู้วัดแรง  
  • อุปกรณ์ตรวจรู้วัดแรงบิด
อุปกรณ์ไฟฟ้า
อุปกรณ์ไฟฟ้า
เอนโคดเดอร์ (Encoder)

เอนโคดเดอร์เป็นอุปกรณ์ตรวจรู้รูปแบบหนึ่งที่มีความสำคัญมาก เพราะใช้ในการวัดมุมเพลาของมอเตอร์ เอนโคดเดอร์ประกอบด้วย จานหมุน และอุปกรณ์ตรวจจับ ที่จานหมุนจะมีช่องเล็กๆ ซึ่งเมื่อเพลาของมอเตอร์หมุน จะทำให้จานหมุนไปตัดลำแสงของอุปกรณ์ตรวจจับ ส่งผลให้ชุดไฟฟ้ารับแสงมีการรับสัญญาณเป็นช่วงๆ สัญญาณไฟฟ้าที่ได้จึงมีลักษณะเป็นพัลส์ (pulse) ซึ่งสัญญาณพัลส์จะแปรผันตรงกับการหมุนของเพลาของมอเตอร์ที่มีอยู่  ๒ ชนิด คือ  
เอนโคดเดอร์
เอนโคดเดอร์
๑) เอนโคดเดอร์ อินคริเมนต์ (incremental encoder) โดยทั่วไปเรียกว่า เอนโคดเดอร์แบบโรตารี (rotary encoder) เป็นเอนโคดเดอร์แสดงความเร็ว สัญญาณที่ได้จะเป็นสัญญาณแบบดิจิทัล ซึ่งง่ายต่อการแปลผล

๒) เอนโคดเดอร์แบบสัมบูรณ์ (absolute encoder) หรือโดยทั่วไปเรียกว่า โพเทนทิโอมิเตอร์ (potentiometer) ซึ่งทำงานคล้ายกับเอนโคดเดอร์แบบโรตารี แต่สัญญาณที่ได้จะเป็นเลขฐานสอง (binary) การใช้งานจึงยากกว่าเอนโคดเดอร์แบบโรตารี แต่ให้ความเที่ยงตรงและสามารถบอกทุกตำแหน่งของการเคลื่อนที่ได้
จอภาพเป็นอุปกรณ์แสดงผลที่ใช้บอกสถานะด้วยภาพ
จอภาพเป็นอุปกรณ์แสดงผลที่ใช้บอกสถานะด้วยภาพ
อุปกรณ์แสดงผล (Output device)

อุปกรณ์แสดงผล คือ อุปกรณ์ที่ใช้แสดงค่าสถานะต่างๆ ของหุ่นยนต์ให้มนุษย์ทราบ ซึ่งมีอยู่หลายรูปแบบ เช่น จอภาพ ที่ใช้บอกสถานะด้วยภาพ ลำโพง ที่ใช้บอกสถานะด้วยเสียง หรือแม้กระทั่งหลอดไฟก็ใช้บอกสถานะของหุ่นยนต์ได้เช่นกัน
อุปกรณ์ชุดขับมอเตอร์ที่ใช้ควบคุมตำแหน่งและความเร็วของมอเตอร์
อุปกรณ์ชุดขับมอเตอร์ที่ใช้ควบคุมตำแหน่งและความเร็วของมอเตอร์
ชุดขับมอเตอร์ (Motor driver)

เป็นส่วนสำคัญที่จะทำให้มอเตอร์เกิดการหมุน ส่วนใหญ่การทำงานของชุดขับ เหมือนกับการทำงานของสวิตช์ ที่เปิด-ปิดตามสัญญาณที่ชุดควบคุมส่งออกมา ชุดขับมอเตอร์ใช้ในการควบคุมตำแหน่ง และความเร็วของมอเตอร์ เช่น การขับมอเตอร์ไฟฟ้ากระแสตรง ความเร็วของการหมุนขึ้นอยู่กับขนาดของแรงดัน และกระแสไฟฟ้าที่จ่ายให้แก่มอเตอร์ แต่แรงดัน และกระแสไฟฟ้าที่ป้อนให้ ต้องไม่เกินค่าที่มอเตอร์สามารถรับได้ด้วย มิฉะนั้นจะทำให้เกิดความร้อนที่ตัวของมอเตอร์ และเกิดความเสียหายขึ้นได้ ส่วนทิศทางการหมุนของมอเตอร์ ขึ้นอยู่กับขั้วของแหล่งจ่ายที่ป้อนเข้าไป
๔. อุปกรณ์ควบคุม (Controller)

คือ สมองกลที่ควบคุมการทำงานของหุ่นยนต์ เช่น สมองกลที่ประดิษฐ์จากอุปกรณ์อิเล็กทรอนิกส์ เครื่องควบคุมขนาดเล็ก คอมพิวเตอร์ชนิดแผงวงจรสำเร็จรูป เครื่องควบคุมเชิงตรรกะที่สามารถสร้างโปรแกรมได้ คอมพิวเตอร์ส่วนบุคคล

สมองกลที่ประดิษฐ์จากอุปกรณ์อิเล็กทรอนิกส์

ความแตกต่างระหว่างหุ่นยนต์กับเครื่องจักรกลทั่วไป คือ หุ่นยนต์มีระดับขั้นการทำงานด้วยตัวเองสูงกว่าเครื่องจักรกล สมองกลของหุ่นยนต์เปรียบได้กับสมองของมนุษย์ ซึ่งหากหุ่นยนต์ไม่มีสมองกลไว้สั่งการ ก็อาจเดินไปชนฝาผนังหรือสิ่งต่างๆ ได้ ในการควบคุมหุ่นยนต์ที่ไม่มีเงื่อนไขการทำงานมากนัก สามารถใช้อุปกรณ์อิเล็กทรอนิกส์พื้นฐาน เช่น ตัวต้านทาน ตัวเก็บประจุ ตัวเหนี่ยวนำ ทรานซิสเตอร์ อุปกรณ์ตรวจรู้มาประกอบกันเป็นวงจรควบคุมการทำงานของหุ่นยนต์ได้
เครื่องควบคุมขนาดเล็ก
เครื่องควบคุมขนาดเล็ก
เครื่องควบคุมขนาดเล็ก (Microcontroller)

หุ่นยนต์ที่มีเงื่อนไขของการทำงานมากขึ้น จำเป็นต้องเพิ่มความสามารถให้แก่สมองกลของหุ่นยนต์ ดังนั้น จึงได้มีการคิดค้นเครื่องควบคุมขนาดเล็กขึ้นมา เพื่อแทนที่วงจรอิเล็กทรอนิกส์และด้วยพื้นฐานดังกล่าว เครื่องควบคุมขนาดเล็กจึงสามารถเปลี่ยนแปลงเงื่อนไขการทำงานได้ง่าย โดยการเปลี่ยนโปรแกรมลำดับการควบคุม บนเครื่องคอมพิวเตอร์ส่วนบุคคล นอกจากนี้ราคาไม่แพง ต้องการแหล่งจ่ายไฟต่ำ เครื่องควบคุมขนาดเล็กจึงเป็นที่นิยมใช้กันมาก สำหรับการสร้างสมองกลให้แก่หุ่นยนต์
แผงวงจรควบคุมการทำงานของหุ่นยนต์
แผงวงจรควบคุมการทำงานของหุ่นยนต์
คอมพิวเตอร์ชนิดแผงวงจรสำเร็จรูป (Single Board Computer: SBC)

เป็นเครื่องควบคุมที่มีการทำงานเหมือนกับคอมพิวเตอร์ส่วนบุคคล เพียงแต่ทุกอย่างจะย่อลงมาให้อยู่ในแผงวงจรเล็กๆ เพียงแผงเดียว ซึ่งนิยมใช้ในหุ่นยนต์ที่มีเงื่อนไขในการทำงานมาก หรือมีการควบคุมที่ซับซ้อน
เครื่องควบคุมเชิงตรรกะที่สร้างโปรแกรมได้
เครื่องควบคุมเชิงตรรกะที่สร้างโปรแกรมได้
เครื่องควบคุมเชิงตรรกะที่สามารถสร้างโปรแกรมได้ หรือพีแอลซี (Programmable Logic Controller : PLC)

เครื่องควบคุมเชิงตรรกะที่สามารถสร้างโปรแกรมได้ถูกคิดค้นและพัฒนาขึ้นมา เพื่อทดแทนวงจรรีเลย์ (relay) ของการควบคุมระบบอัตโนมัติ ซึ่งนิยมใช้กันมากในโรงงานอุตสาหกรรม เนื่องจากมีความทนทานต่อสภาพแวดล้อม ในโรงงานอุตสาหกรรม ใช้งานสะดวก และปรับเปลี่ยนการทำงานได้ง่าย รวมทั้งสามารถใช้งานได้อย่างอเนกประสงค์ และง่ายต่อการบำรุงรักษา
คอมพิวเตอร์ส่วนบุคคล  (Personal Computer: PC)

คอมพิวเตอร์ส่วนบุคคลเป็นเครื่องควบคุมระดับสูง ซึ่งสามารถปรับเปลี่ยนการทำงานของหุ่นยนต์ได้อย่างหลากหลาย มีประสิทธิภาพมากที่สุด ในบรรดาเครื่องควบคุมทั้งหมดที่กล่าวมา แต่ไม่นิยมใช้ในหุ่นยนต์ทั่วไปมากนัก เนื่องจากมีขนาดใหญ่ น้ำหนักมาก และต้องการพลังงานสูง



หุ่นยนต์อุตสาหกรรม (Industrial Robot Type)

อุตสาหกรรมในประเทศไทยจะเห็นได้ว่ามีการนำเทคโนโลยีระบบอัตโนมัติ (Automation Technology) เข้ามาใช้งานเพื่อให้สินค้าสามารถแข่งขันในตลาดโลกได้ ทั้งในเรื่องราคา และคุณภาพ โดยเฉพาะในเรื่องคุณภาพ อาจเนื่องจากมีการเปลี่ยนรุ่นผลิตภัณฑ์อยู่บ่อยๆ ต้องใช้เวลาในการ Set Up ปัจจุบันจึงมีการนำเทคโนโลยีต่างๆ เข้ามาใช้ หนึ่งในเทคโนโลยีที่มีความยืดหยุ่นสูง ได้แก่ หุ่นยนต์อุตสาหกรรม เนื่องจากการเปลี่ยนการทำงานสามารถทำได้โดยการเปลี่ยนโปรแกรม นอกจากนี้คุณภาพของผลิตภัณฑ์ที่ได้มีความสม่ำเสมอเป็นมาตรฐานเดียวกัน
การทำงานของหุ่นยนต์อุตสาหกรรมจะเลียนแบบร่างกายของมนุษย์ โดยจะเลียนแบบเฉพาะส่วนของร่างกายที่จะนำไปใช้ประโยชน์ในอุตสาหกรรมเท่านั้น นั่นคือช่วงแขนของมนุษย์ ดังนั้น บางคนอาจจะได้ยินคำว่า “แขนกล” ซึ่งก็หมายถึงหุ่นยนต์อุตสาหกรรม การทำงานของหุ่นยนต์อุตสาหกรรมเปรียบเทียบกับแขนมนุษย์ แสดงดังรูป
ปัจจุบันและในอนาคตหุ่นยนต์อุตสาหกรรมจะเข้ามามีบทบาทในอุตสาหกรรมมากขึ้น โดยจะทำงานแทนมนุษย์ในงานต่างๆ เหล่านี้งานที่อันตราย เช่น งานยกเหล็กเข้าเตาหลอม งานที่เกี่ยวข้องกับสารเคมี งานซ้ำซากน่าเบื่อ เช่น งานยกสินค้าจากสายงานการผลิต งานประกอบ งานบรรจุผลิตภัณฑ์งานที่ต้องการคุณภาพมาตรฐานเดียวกัน เช่น งานเชื่อม งานตัด งานที่ต้องใช้ทักษะความชำนาญสูง เช่น งานเชื่อมแนว เชื่อมเลเซอร์ งานที่ต้องใช้ความละเอียดประณีต เช่น งานประกอบชิ้นส่วนอิเล็กทรอนิกส์ งานตรวจสอบ (Inspection) ฯลฯ
หุ่นยนต์ คือ เครื่องจักรที่ถูกควบคุมอัตโนมัติ สามารถเขียนโปรแกรมใหม่ได้ ใช้งานเอนกประสงค์ โปรแกรมการเคลื่อนที่จะต้องสามารถโปรแกรมให้เคลื่อนที่ได้อย่างน้อย 3 แกนหรือมากกว่า หุ่นยนต์อาจจะยึดอยู่กับที่หรือย้ายตำแหน่ง (Mobile) เพื่อใช้ในงานอุตสาหกรรม
การแบ่งชนิดของหุ่นยนต์
โดยทั่วไปการแบ่งชนิดของหุ่นยนต์จะแบ่งตามลักษณะรูปทรงของพื้นที่ทำงาน (Envelope Geometric) แต่ก่อนจะอธิบายชนิดของหุ่นยนต์ขออธิบายการทำงานของจุดต่อ (Joint) ของหุ่นยนต์ อุตสาหกรรมซึ่งในขั้นพื้นฐานมี 2 ชนิดด้วยกัน ดังนี้
จุดต่อ (Joint) ทั้งสองแบบเมื่อนำมาต่อเข้าด้วยกันอย่างน้อย 3 แกนหลักจะได้พื้นที่ทำงาน (Work envelope) ที่มีลักษณะแตกต่างกันไป ซึ่งสามารถนำมาแบ่งชนิดของหุ่นยนต์ได้ดังต่อไปนี้
1. Cartesian (Gantry) Robot
แกนทั้ง 3 ของหุ่นยนต์จะเคลื่อนที่เป็นแบบเชิงเส้น (Prismatic) ถ้าโครงสร้างมีลักษณะคล้าย Overhead Crane จะเรียกว่าเป็นหุ่นยนต์ชนิด Gantry แต่ถ้าหุ่นยนต์ไม่มีขาตั้งหรือขาเป็นแบบอื่น เรียกว่า ชนิด Cartesian
Cartesian Robot Work Envelop Of Cartesian Robot
ข้อดี
1. เคลื่อนที่เป็นแนวเส้นตรงทั้ง 3 มิติ
2. การเคลื่อนที่สามารถทำความเข้าใจง่าย
3. มีส่วนประกอบง่ายๆ
4. โครงสร้างแข็งแรงตลอดการเคลื่อนที่
ข้อเสีย
1. ต้องการพื้นที่ติดตั้งมาก
2. บริเวณที่หุ่นยนต์เข้าไปทำงานได้ จะเล็กกว่าขนาดของตัวหุ่นยนต์
3. ไม่สามารถเข้าถึงวัตถุจากทิศทางข้างใต้ได้
4. แกนแบบเชิงเส้นจะ Seal เพื่อป้องกันฝุ่นและของเหลวได้ยาก
การประยุกต์ใช้งาน
เนื่องจากโครงสร้างมีความแข็งแรงตลอดแนวการเคลื่อนที่ ดังนั้นจึงเหมาะกับงานเคลื่อนย้ายของหนักๆ หรือเรียกว่างาน Pick-and-Place เช่น ใช้โหลดชิ้นงานเข้าเครื่องจักร (Machine loading) ใช้จัดเก็บชิ้นงาน (Stacking) นอกจากนี้ยังสามารถใช้ในงานประกอบ (Assembly) ที่ไม่ต้องการเข้าถึงในลักษณะที่มีมุมหมุน เช่น ประกอบอุปกรณ์อิเล็กทรอนิกส์ และงาน Test ต่างๆ
2. Cylindrical Robot
หุ่นยนต์ประเภทนี้จะมีแกนที่ 2 (ไหล่) และแกนที่ 3 (ข้อศอก) เป็นแบบ Prismatic ส่วนแกนที่ 1 (เอว) จะเป็นแบบหมุน (Revolute) ทำให้การเคลื่อนที่ได้พื้นที่การทำงานเป็นรูปทรงกระบอก ดังรูป
Cylindrical Robot Work Envelop Of Cylindrical Robot
ข้อดี
1. มีส่วนประกอบไม่ซับซ้อน
2. การเคลื่อนที่สามารถเข้าใจได้ง่าย
3. สามารถเข้าถึงเครื่องจักรที่มีการเปิด - ปิด หรือเข้าไปในบริเวณที่เป็นช่องหรือโพรงได้ง่าย (Loading) เช่น การโหลดชิ้นงานเข้าเครื่อง CNC
ข้อเสีย
1. มีพื้นที่ทำงานจำกัด
2. แกนที่เป็นเชิงเส้นมีความยุ่งยากในการ Seal เพื่อป้องกันฝุ่นและของเหลว

การประยุกต์ใช้งาน
โดยทั่วไปจะใช้ในการหยิบยกชิ้นงาน (Pick-and-Place) หรือป้อนชิ้นงานเข้าเครื่องจักร เพราะสามารถเคลื่อนที่เข้าออกบริเวณที่เป็นช่องโพรงเล็กๆ ได้สะดวก
3. Spherical Robot (Polar)
มีสองแกนที่เคลื่อนในลักษณะการหมุน (Revolute Joint) คือแกนที่ 1 (เอว) และแกนที่ 2 (ไหล่) ส่วนแกนที่ 3 (ข้อศอก) จะเป็นลักษณะของการเคลื่อนที่แนวเส้นตรง ดังรูป
Spherical Robot Work Envelop Of Spherical Robot
ข้อดี
1. มีปริมาตรการทำงานมากขึ้นเนื่องจากการหมุนของแกนที่ 2 (ไหล่)
2. สามารถที่จะก้มลงมาจับชิ้นงานบนพื้นได้สะดวก
ข้อเสีย
1. มีระบบพิกัด (Coordinate) และส่วนประกอบ ที่ซับซ้อน
2. การเคลื่อนที่และระบบควบคุมมีความซับซ้อนขึ้น
การประยุกต์ใช้งาน
ใช้ในงานที่มีการเคลื่อนที่ในแนวตั้ง (Vertical) เพียงเล็กน้อย เช่น การโหลดชิ้นงานเข้าออกจากเครื่องปั้ม (Press) หรืออาจจะใช้งานเชื่อมจุด (Spot Welding)
4. SCARA Robot
หุ่นยนต์ SCARA (Selective Compliance Assembly Robot Arm) จะมีลักษณะแกนที่ 1 (เอว) และแกนที่ 3 (ข้อศอก) หมุนรอบแกนแนวตั้ง และแกนที่ 2 จะเป็นลักษณะการเคลื่อนที่ขึ้นลง (Prismatic) ดังรูป หุ่นยนต์ SCARA จะเคลื่อนที่ได้รวดเร็วในแนวระนาบ และมีความแม่นยำสูง
SCARA Robot Work Envelop Of SCARA Robot

ข้อดี
1. สามารถเคลื่อนที่ในแนวระนาบ และขึ้นลงได้รวดเร็ว
2. มีความแม่นยำสูง
ข้อเสีย
1. มีพื้นที่ทำงานจำกัด
2. ไม่สามารถหมุน (rotation)ในลักษณะมุมต่างๆได้
3. สามารถยกน้ำหนัก (Payload) ได้ไม่มากนัก
การประยุกต์ใช้งาน
เนื่องจากการเคลื่อนที่ในแนวระนาบและขึ้นลงได้รวดเร็วจึงเหมาะกับงานประกอบชิ้นส่วนทางอิเล็กทรอนิกส์ ซึ่งต้องการความรวดเร็วและการเคลื่อนที่ก็ไม่ต้องการการหมุนมากนัก แต่จะไม่เหมาะกับงานประกอบชิ้นส่วนทางกล (Mechanical Part) ซึ่งส่วนใหญ่การประกอบจะอาศัยการหมุน (Rotation)ในลักษณะมุมต่างๆ นอกจากนี้ SCARA Robot ยังเหมาะกับงานตรวจสอบ (Inspection) งานบรรจุภัณฑ์ (Packaging)
5. Articulated Arm (Revolute)
ทุกแกนการเคลื่อนที่จะเป็นแบบหมุน (Revolute) รูปแบบการเคลื่อนที่จะคล้ายกับแขนคน ซึ่งจะประกอบด้วยช่วงเอว ท่อนแขนบน ท่อนแขนล่าง ข้อมือ การเคลื่อนที่ทำให้ได้พื้นที่การทำงาน ดังรูป
Articulated Arm Robot Work Envelop Of Articulated Robot
ข้อดี
1. เนื่องจากทุกแกนจะเคลื่อนที่ในลักษณะ ของการหมุนทำให้มีความยืดหยุ่นสูงในการเข้าไปยังจุดต่างๆ
2. บริเวณข้อต่อ (Joint) สามารถ Seal เพื่อป้องกันฝุ่น ความชื้น หรือน้ำ ได้ง่าย
3. มีพื้นที่การทำงานมาก
4. สามารถเข้าถึงชิ้นงานทั้งจากด้านบน ด้านล่าง
5. เหมาะกับการใช้มอเตอร์ไฟฟ้า เป็นชุดขับเคลื่อน
ข้อเสีย
1. มีระบบพิกัด (Coordinate) ที่ซับซ้อน
2. การเคลื่อนที่และระบบควบคุมทำความ เข้าใจได้ยากขึ้น
3. ควบคุมให้เคลื่อนที่ในแนวเส้นตรง (Linear) ได้ยาก
4.โครงสร้างไม่มั่นคงตลอดช่วงการเคลื่อนที่ เพราะบริเวณขอบ Work Envelope ปลายแขนจะ
5. มีการสั่น ทำให้ความแม่ยำลดลง
การประยุกต์ใช้งาน
หุ่นยนต์ชนิดนี้สามารถใช้งานได้กว้างขวางเพราะสามารถเข้าถึงตำแหน่งต่างๆ ได้ดี เช่น งานเชื่อม Spot Welding, Path Welding, งานยกของ, งานตัด, งานทากาว, งานที่มีการเคลื่อนที่ยากๆ เช่น งานพ่นสี งาน Sealing ฯลฯ
การเลือกหุ่นยนต์ชนิดต่างๆ มาใช้งาน ควรพิจารณาให้เหมาะสมกับงานที่ต้องการให้หุ่นยนต์ทำดังที่อธิบายไว้ตอนต้น
- See more at: http://www.applicadthai.com/business/articles/industrial-robot-type#sthash.naIRh0xu.dpuf

หุ่นยนต์ฮิวแมนนอยด์

หุ่นยนต์ฮิวแมนนอยด์ (อังกฤษ: humanoid robot) คือหุ่นยนต์ที่ออกแบบขึ้นมาโดยมีพื้นฐานมาจากร่างกายมนุษย์ โดยทั่วไปแล้วหุ่นยนต์ฮิวแมนนอยด์มีลำตัวพร้อมหัว สองแขน และสองขา แม้หุ่นยนต์ฮิวแมนนอยด์บางรูปแบบจะจำลองเฉพาะบางส่วนของร่างกายเท่านั้น ตัวอย่างเช่น ตัวแต่เอวขึ้นไป หุ่นยนต์ฮิวแมนนอยด์บางตัวยังอาจมี 'ใบหน้า' พร้อม 'ตา' และ 'ปาก' อีกด้วย แอนดรอยด์ (android) คือหุ่นยนต์ฮิวแมนนอยด์ที่สร้างเลียนแบบมนุษย์เพศชาย และ gynoid คือหุ่นยนต์ฮิวแมนนอยด์ที่สร้างเลียนแบบมนุษย์เพศหญิง
หุ่นยนต์ฮิวแมนนอยด์เป็นหุ่นยนต์อัตโนมัติ เนื่องจากมันสามารถปรับตัวเข้ากับการเปลี่ยนแปลงของสภาพแวดล้อมหรือตัวมันเอง และยังคงทำงานต่อเพื่อบรรลุเป้าหมาย สิ่งนี้เป็นข้อแตกต่างหลักระหว่างฮิวแมนนอยด์และหุ่นยนต์ชนิดอื่น เช่นหุ่นยนต์อุตสาหกรรม ที่ใช้ปฏิบัติภารกิจในสภาพแวดล้อมที่มีโครงสร้างชัดเจนมาก ในบริบทนี้ ความสามารถของหุ่นยนต์ฮิวแมนนอยด์อาจรวมถึง แต่ไม่จำกัดแค่สิ่งเหล่านี้:
  • ดูแลรักษาตัวเอง (เติมพลังงานให้ตัวมันเอง)
  • เรียนรู้อัตโนมัติ (เรียนรู้หรือได้มาซึ่งความสามารถใหม่ ๆ โดยไม่ต้องได้รับความช่วยเหลือจากภายนอก, ปรับเปลี่ยนยุทธศาสตร์ตามสิ่งแวดล้อม และปรับตัวเข้ากับสถานการณ์ใหม่ ๆ)
  • หลีกเลี่ยงสถานการณ์ที่จะเป็นอันตรายต่อมนุษย์ ทรัพย์สิน และตัวมันเอง
  • โต้ตอบกับมนุษย์และสภาพแวดล้อมอย่างปลอดภัย

การพัฒนาหุ่นยนต์ฮิวแมนนอยด์[แก้]

ระบบปัญญาประดิษฐ์ที่ใช้ในการควบคุมการเคลื่อนที่หรือการเดินของหุ่นยนต์[1] ในขั้นต้น คือ การเดินแบบสถิตย์ หรือการเคลื่อนที่โดยอาศัยจุดศูนย์ถ่วงที่อยู่ภายในพื้นที่ครอบคลุมบริเวณขาทั้ง 2 ข้างของหุ่นยนต์ จากนั้นจึงเป็นการพัฒนาเป็นรูปแบบ การเดินแบบจลน์ หรือการเคลื่อนที่โดยอาศัยจุดศูนย์ถ่วงที่อยู่นอกพื้นที่ครอบคลุมของขาทั้ง 2 ข้าง[2] ซึ่งเป็นรูปแบบการเดินของมนุษย์ตามลำดับ ซึ่งทีมวิศวกรได้ทำการศึกษาวิจัยและพัฒนาตามข้อมูลที่ทำการทดลองและจดบันทึกเป็นฐานข้อมูล จากการทดลองรูปแบบการเคลื่อนที่ของมนุษย์ ทีมวิศวกรได้คำนึงถึงองค์ประกอบสำคัญ 3 อย่างในการพัฒนาหุ่นยนต์ฮิวแมนนอยด์ให้สามารถเดินได้เช่นเดียวกับมนุษย์ คือ
  1. การพัฒนาความเร็วในการเคลื่อนที่ไปด้านหน้าของหุ่นยนต์
  2. การเพิ่มเติมในระดับถัดไปของร่างกาย เช่น แขน มือและศีรษะ
  3. การพัฒนาความสามารถในการเคลื่อนที่ของหุ่นยนต์ เช่นการก้าวเดินขึ้นลงบันได หรือการวิ่ง

การก้าวเดินแบบอิสระ[แก้]

พื้นฐานในการเคลื่อนไหวของหุ่นยนต์ฮิวแมนนอยด์ 2 ขานั้น สามารถศึกษาได้โดยตรงจากการเคลื่อนไหวของหุ่นยนต์บนพื้นผิวที่เรียบ ไม่ขรุขระ ซึ่งหุ่นยนต์สามารถก้าวเดินได้ตามปกติ ลำดับต่อไปของการก้าวเดินคือการพัฒนาศักยภาพไปสู่การเคลื่อนที่ไปด้านหน้าของหุ่นยนต์อย่างอิสระ สามารถก้าวเดินบนพื้นผิวขรุขระ พื้นเอียงหรือพื้นที่ลาดชันรวมทั้งระดับของขั้นบันไดอย่างมีเสถียรภาพ และไม่เสี่ยงต่อการเสียหลักหกล้มขณะก้าวเดิน เทคนิคการก้าวเดินแบบอิสระของหุ่นยนต์ฮิวแมนนอยด์ สามารถสรุปได้ดังนี้
  1. เทคนิคขั้นพื้นฐานของการวางเท้าของหุ่นยนต์ โดยจะต้องคงสภาพแน่นอนไม่แปรเปลี่ยนไปตามลักษณะของพื้นผิว แม้หุ่นยนต์จะก้าวเดินในพื้นที่ขรุขระ
  2. เทคนิคขั้นพื้นฐานของการปรับสภาพของหุ่นยนต์ หากในกรณีที่หุ่นยนต์ก้าวเดินแล้วมีการหกล้มหรือเสียการทรงตัว
  3. เทคนิคขั้นพื้นฐานของการปรับสภาพของหุ่นยนต์ โดยให้ผลของการเคลื่อนที่ถูกต้อง แม่นยำโดยการจดจำเป้าหมายที่ต้องการ ซึ่งเทคนิคเหล่านี้ทีมวิศวกรได้นำมาพัฒนาเป็นส่วนต่าง ๆ ก่อนจะนำมารวมกันในรูปแบบการเคลื่อนไหวของหุ่นยนต์ฮิวแมนนอยด์

เทคนิคการก้าวเดินอย่างมีเสถียรภาพ[แก้]

จุดโมเมนต์ศูนย์ (ZMP) หรือจุดปฏิกิริยาที่พื้นฐาน
ปกติแล้วเมื่อมีการเคลื่อนที่หรือยืนอยู่นิ่ง ๆ ร่างกายของมนุษย์จะถ่ายโอนน้ำหนักตัวตามธรรมชาติ เพื่อรักษาสมดุลของร่างกายในท่านั้นไว้ แต่ถ้าการถ่ายโอนน้ำหนักของร่างกายไม่สมดุลกัน ร่างกายมนุษย์จะสามารถปรับสภาพให้สมดุลและไม่ล้ม โดยเคลื่อนตำแหน่งของเท้าซ้ายหรือขวาออกจากจุดที่ยืนอยู่ ซึ่งลักษณะดังกล่าวสามารถเกิดขึ้นกับหุ่นยนต์ฮิวแมนนอยด์ได้เช่นกัน เมื่อหุ่นยนต์ก้าวเดินไปข้างหน้า ผลจากแรงเฉื่อย[3]และแรงดึงดูดของโลกจะมีผลโดยตรง ต่อการเพิ่มและลดความเร่งในท่าทางการเดินของหุ่นยนต์ ซึ่งแรงเหล่านี้เรียกว่าแรงเฉื่อยรวม และเมื่อเท้าของหุ่นยนต์กระแทกกับพื้น จะได้รับผลกระทบนี้โดยตรง เรียกว่าแรงปฏิกิริยาจากพื้น
การตัดกันในระหว่างแนวแรงเฉื่อยพื้น และรวมทั้งตำแหน่งดังกล่าวจะมีค่าโมเมนต์[4]เท่ากับศูนย์ เรียกตำแหน่งในจุดนี้ว่า จุดโมเมนต์ศูนย์ (ZMP) ซึ่งเป็นจุดที่แรงปฏิกิริยาลง เรียกว่าจุดปฏิกิริยาที่พื้นฐาน ลักษณะท่าทางการเดินของหุ่นยนต์จะถูกกำหนดจากคอมพิวเตอร์โดยระบบปัญญาประดิษฐ์ ทำการคำนวณ ประมวลผลและส่งผลไปยังข้อหมุนต่าง ๆ ของหุ่นยนต์ โดยให้มีการสอดคล้องกันกับความเฉื่อยที่เกิดขึ้นจากการคำนวณ เรียกว่า ZMP เป้าหมาย[5] เมื่อหุ่นยนต์เกิดความสมดุลของร่างกายในขณะที่ก้าวเดินได้อย่างสมบูรณ์แบบ แกนของแรงเฉื่อยรวมเป้าหมายและแรงปฏิกิริยาที่พื้น จะเป็นตำแหน่งเดียวกัน และเมื่อหุ่นยนต์ก้าวเท้าเดินผ่านพื้นผิวที่ขรุขระ ตำแหน่ง 2 ตำแหน่งดังกล่าวจะหนีออกจากกัน ส่งผลให้เกิดความสมดุลลงแรงที่จะทำให้หุ่นยนต์หกล้มเกิดขึ้นมาทันที
แรงที่ทำให้หุ่นยนต์เกิดการหกล้มเมื่อก้าวเดิน เกิดจากความเหลื่อมล้ำในระหว่าง ZMP เป้าหมายและแรงปฏิกิริยารวมที่พื้น ซึ่งเมื่อพิจารณาและวิเคราะห์แล้วพบว่า นั่นคือสาเหตุหลักที่ทำให้ความไม่สมดุลเกิดขึ้น และเมื่อหุ่นยนต์เกิดการเสียความสมดุล[6] ระบบป้องกัน 3 ระบบที่จะป้องกันการหกล้มหรือเสียหลักการทรงตัวของหุ่นยนต์ ที่สามารถทำให้หุ่นยนต์ก้าวเดินต่อไปได้อย่างต่อเนื่องคือ
  • ระบบควบคุมแรงปฏิกิริยา[7]
  • ระบบควบคุม ZMP
  • ระบบควบคุมการวางเท้าของหุ่นยนต์